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AN APPLICATION OF INVERSE PROBLEM
TECHNIQUES TO SPATIAL STRUCTURES

Pei Shan Chen', Mamoru Kawaguchi’ and Masaru Abe®
Abstract

The present paper atiempts to give a definilion of inverse problems for spatial
structures, and to develop a design method to find the optimum configurations
and shapes for such structures by applying inverse problem techniques to them.
As an example, the present paper proposes a method to find the optimum shape
of a shell or a space frame that has a maximum buckling capacity.

Introduction

The conventional procedure of structural analysis has normally been to find
the displacements and the internal forces of a structure with given informations
such as topological characters (configuration), dimensions and shape or coordi-
nates, and material character under given loading conditions. These informa-
tions are predelermined on the basis of experiences, guess work or conjecture.
Occasionally, some of them are altered when they are found unsuitable for de-
sign as a resull of analysis. By this method, however, the capabilities of the
structure and its materials cannot be fully exploited, especially when we design
large span spatial structures, for which we have only limited experiences. To
circumvent the above drawbacks of conventional design methods, it may be suit-
able to apply the inverse prablem techniques to the design of spatial structures .
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With the development of computer science, the complex inverse problems can
be solved quickly and more easily, and it seemes that the time will soon come
when we can design the coufiguration and shape of a structure, especially a
large-span spatial structure, by means of inverse porblem techniques.

1. Inverse Problems For Spatial Structure

1.1 Definition of Inverse Porblem

Many people have been trying to give the inverse problem a definition(ref.
Sabatier,P.C., 1986), but there has not seem to be a unified definition for dis-
crimination between direct and inverse problems. Before giving the definition
of the inverse problems on spatial structures, we should analyze the general
inverse problems mathematically. Generally, a problem can be expressed as a
transformation from one space to another.

S—R. (1

In the source space S, there is always a subspace @ which is constituted by
some invariable-sets wilth conslant elemeuts, condilions or some specific units.
We call 2 the invariable space of the direct problem. So, the problem can be
expressed as

F(@,1) =R (2)
where QU Y = S, and F is the tansformation, and we call such a problem a

direct problem.

There are many problems in which the source subspace Q is unknown and we
have to find it by the informations of the T and its response R. Such a problem
is called an inverse problem.

Definition : A problem is called an inverse problem if it is a problem to find
its invariable space £ of its direct problem.
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1.2 The Inverse Problem For Spatial Structure

There are only few papers which give a definition of the inverse problem on
spatial structures. Before defining it, the direct problem should be analyzed first.
The spatial structure problems are always constituted by considering some main
elements, which are

3

: Topological charactor of the structure ;

¢ : Shape, coordinates or major dimensions of the structure ;

¢ : The material charactor of the structure ;

p: The prestresses (self-balancing internal lorces) of the siruclure ;

v : The working surroundings, temperature change

 : The steady or dynamic (moving) loading system exerting on the structure ;
§ : The displacements, deformation of the structure ;

g : The siresses, inlernal forces of the structure.
With the conventional design method, the invariable space of the problem is
Q=(r,(ep). (3

The direct problem of the struclural design is to find one or more elements
of {v,x,6,0} corresponding to a given space 2 . For example, lo find the
deformation of a given structure subjected to a certern loading system is one
of the direct problem, which is a transformation 7(Q,x) = § . To find the
buckling-load of a space frame or a shell is a direct problem T(2) = &, etc. .

Contrarily, the inverse problem is a problem to find the elements of the in-
variable space 2 of the direct problem.

Definition : The inverse problem for spatial structure is a problem to find the
elements of invariable space Q2 = (7,(, ¢, p) of ils direct problem .

So, the inverse problems for spatial structures can be classified as :
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1. Tepological problems : To find the topological configuration of a
structure;

2. Shape-problems : To find the shape, or some of the dimensions or
nodal coordinates of the structure;

3. Material-problems : To find the best mixture of malerials of some
parts, some members of the structure or whole of the strucuture;

4. Prestress-problems : To find the optimum distribution of prestresses;

For the topological problems, the important thing is not only the mathemat-
ical analysis but also the structural design idea. These problems are challenged
by many researchers, and some encouraging progress have been obtained (ref.
Rozvany, G.I.N.,1989) (rel. Lin,J.H., Che,W.Y. and Yu,Y.S.,1982). Now, there
are many important topics on Lhis research, for example, optimum configuration
of a space frame and multicriteria optimization with topolegical problem. As an
example, the present paper proposes a design method for finding a space frame
or a shell suitably strong against buckling.

Shape problems are these of shape-finding, shape optimization(ref.Chen,P.S.,
Abe,M. and Kawaguchi,M.,1993) and shape analysis of movable structures or
folding-structures (ref. Kawaguchi, K., Hangai,Y. and Nabana,K.,1993). The
prestress problems are always concerned with the shape-problems, because the
distribution of the internal forces due to prestressing depends on the shape, and
must be in equilibrium in the given shape before loading.

Now the computers have become popular and powerful enough to deal with
inverse problems and we may be able to believe that there will be a revolution
on the design of spatial structures in this direclion. So, it is very imporlanl to
develop the desgin method by application of the inverse problems.

stiffened top

curve to be found
by optimization

—

constant rise

|-—~— consta|nt span ——-l

Fig.1 The section of a space frame of revolution stiffened at its top
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2. Shape With Maximum Buckling-Load

2.1 Introduction of The Design Method

In design of a shell or a space [rame one of the most important problems is the
buckling problem, especially for large span structures. It is not rational or eco-
nomical to assume a uniform stiffeness for the whole area or all of the members
of the structure. We can stiffen some particular parls which are susceptible to
buckling, ot can be stiffened with ease. The other parts can be found by shape
optimization for maximum buckling-load.

For example, a dome of revolution with a given rise can be stiffened at its top
so as not to buckle (Fig.1), and the curvature of other areas can be found by
optimization for maximum buckling load.

2.2 The Basic Functions

For the nonlinear analysis, by the finite difference method, finite element
method or Galerkin’s method, the relationship between the loads and the dis-
placements is expressed in form, (rel. Thompson, J.M.T. and Hunt,G.W.,1973)
(ref. Hangai,Y. and Kawamata, S., 1973)

fy(DI,Dg,...,Dm/I)Ef,(D,',/l)=0, (r=1,2,...,n), (4)

where {D;} are the displcement parameters, A the load parameter, and n the
degrees of freedom. For changes in displacement parameter {d;} and in load A,
by Taylor’s expansion, the [ollowing equation can be obtained

o o _ o po _f”_ i o
fl‘(Di +dl'lA +’\) = fr(DlaA)"'(dan“"AaA)fr

1(, 9 2\ .
+ﬁ(d.m+/\ﬂ) fe+-=0; (5)
(r=12,...,n)

The change in displacements and load (d,, A) can be indicaed as functions of
a parameter ¢ with conditions d;(0) = 0; A(0) = 0,

RS 4
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d; () = dit + %df’t’ 4oy (6)

Miy= M+ %A”t’ e (7)

Substituding (6) and (7) into (5), and considering that equation (5) should be
tenable for arbitrary ¢, we obtain the perturbation equation

Z krid:‘ = fn\’\lt (8)
i=l
zkridg +2 (z kn)d:d_’) + Ekrb\d:"\' - fra\ll\lz) = fr.\)*" - (9)
i=1 i=1;=1 i=1

where,
o= O W 2/,

aD; ‘v =33p90,; * = apon’

e 1Y,
ffi——al fu\l‘—'_za/‘z .

Equation (8) can be indicated in matrix form
Kd' =1, (10)

where K is the tangential stiffness matrix, d is vector of change in displacements
and f is the load model vector. By load incremental method, taking t = ),
M =dA/dt =1, ' =0, omitling the high order, equation(10) takes the form

Kd = ), (11)

which is the basic equation of load incremental method for finding the load
deformation curve and the buckling analysis. Equation (9) is used to analyze
the buckling-type.
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2.3 Objective Function And Mathematical Model

For a space frame with a certain configuralion and subjected to a certain load
system, the buckling-load is sensilive lo its erection shape, or to its nodal coor-
dinates. So, it is very important to find its optimum shape (nodal coordinates)
with maximum buckling-load. The objective function to be maximized is the
load-parameter A .

By load incremental method, the iteration is done step by step with the change
of load-parameter. In the iteration, the buckling point is reached if detK = 0.
For an iteration reaching the buckling poinl from step 0 to step T', we have

i(K‘d‘—,\’f) =0. (12)
=0
Take
T
z_%/\‘ =A (13)

as the objective funclion lo be maximized, equation (12) can be rewritten as

szK-d'-Af=o. (14)

=0

Hence, the objective function A takes the form

T
A=gEK’d’ R (15)
=0
where g = ;..' (f,". = j,:") . Then the problem can be expressed as
Maximize A=gTT K'd

Subject to constrainis
v({X)=0
$i(X)<o0.
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2.4 The Iteratjon

In general, the geometrical and mechanical constraints can be divided into
active constraints (equalities) and inaclive constraints (inequalities).

Some of the geometrical constraints may be given by the architectural require-
ments or condilions for some specific purposes. Inaclive constrainis should be
adopted to meet the architectural requirements, and to control the locations of
the joints not to be oo high or too low, or Lo make it a dome-like one.

The mechanical constraints are always given according to the mechanical prin-
ciples. If presitesses are introduced in the structure, however the shape be
changed by the optimizalion, the internal [orces introduced by prestressing must
be in equilibrium without loads, which is the active constraints (ref. Chen,P.S.,
Kawaguchi,M.,1993).

The geommetrical constraint equations, linear or nonlinear, make a constraint
space for the nodal cartesian-coordinates of the structure. The nodal cartesian-
coordinales can be defined by a base of the constraint space, or in other words,
the nodal cartesian-coordinates X = (z;,z3,...,n) can be indicated by a gener-
alized coordinale system q = (41,92,...,q=) n > m , which is the indepen-
dent variable of the optimization.

Iy = ’1’1 (‘11»?2,-- ':qm)
Iz = X:('h:?h---.‘lm)

.....................

Z, = Ay (‘h.']z,'-nflm)

i (n2m) . (16)

Probably, transformation (16) have to be expressed in implicit function, but
the Jacobian matrix of the transformalion can be oblained

0z1/0g, -+ 9z,/8q
J= : : (17)

02,/0g,, +++ 02,/00m

The incremental direction of the objective function can be obtained by its
derivative with respect to the nodal coordinates.
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T T |
Ai=g Y KA +gY Kid* . (18)

=0 3=0

where A; = d4/9z; . Generalized incremental direction respecting the general-
ized coordinates q takes form

M A

A |

2 log] 7 , (19)
A An

where A% = dA/dq; . The direction moving to the uext step of the iteration
takes the form

vi (D=0, il A<
! ;= A, |, otherwise

If T =0 then stop the calculation, or else change the coordinates, and
continue the calculation,

fa}™ ={a} +e{r}" (i=12...m) (20)
where « is the step-length which is defined by

0<a<min{¥ (q7)/VTeTAT |VTTAT 20}, (21)
Co jon

The present analysis is the first step of our research, and there are many impor-
tant topics need deeper researches, for example, the mullicriteria optimization
for maximum backing-load and minimum volume with sensitivity analyses etc..

The method presented is very convenient, and is proposed as a useful aid in
design and design automation.
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