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1. INTRODUCTION
Stability discussion plays an important role in structural
design of large span spatial structures, especially for the
single layer lattice dome structures. Ramm and
Reilinger [2, 3] have presented optimization methods
for shells. However, there are few researches focusing
on the optimum shape of a lattice space frame with
maximum buckling load. In the past years, the authors
have researched such a theme and issued parts of their
works [4, 5]. In the present paper, the authors will
present an optimization method for maximum buckling
load of a lattice space frame.

For most optimization methods with mathematic
treatments, sensitivity of the objective function with
respect to the design parameters is required. But the

sensitivity analysis based on a nonlinear structural
analysis is known as a difficult problem, especially
when material nonlinear behaviors have to be taken into
account. In the present paper, the authors define a so-
called Stiffness Sensitivity Tensor, by which the
sensitivity of the objective function with respect to the
design parameters can be determined simultaneously
with the iteration of geometrically nonlinear structural
analysis. Therefore, the derivative of buckling load
parameter with respect to design parameters can be
obtained easily. GRG is adopted for the optimization in
the present paper, in which the incremental direction of
the objective function is determined by the derivative of
the objective function with respect to the design
parameters. The objective function in the present

Optimization for Maximum
Buckling Load of a Lattice

Space Frame With Nonlinear
Sensitivity Analysis

Pei-Shan Chen1 and Mamoru Kawaguchi2

1Dr. -Eng., Chief Engineer, Structure Design Division, Maeda Corporation
2Dr. -Eng., Professor Emeritus, Department of Architecture, Hosei University

Received February, 13, 2006 – Accepted June, 22, 2006

ABSTRACT: The paper presents an optimization analysis method to find the
optimum shape of a lattice space frame with maximum buckling load. The
buckling load of the lattice space frame is determined by a geometrically
nonlinear analysis. The mathematic analysis of the optimization is based on
Generalised Reduced Gradient method (GRG) [1], in which the slope of the
objective function (the load parameter at buckling point) with respect to the
design parameters is required. In order to determine the slope, the authors
introduced a so-called Stiffness Sensitivity Tensor in the nonlinear structural
analysis, such that the sensitivity analysis can be carried out simultaneously
with the incremental iteration of the geometrically nonlinear structural
analysis. A single layer lattice dome is taken as a numerical example, and the
results show that the buckling load parameter for full area loading case
increases 32.75% compared to that for the initial shape.

Key Words: Shape optimization, maximum buckling load, sensitivity analysis,
Stiffness Sensitivity Tensor, nonlinear analysis, lattice space frame, lattice dome.

International Journal of Space Structures Vol. 21 No. 2 2006 111

4_CHEN  18/8/06  11:46 am  Page 111



optimization is the buckling load parameter of a lattice
space frame, which is determined by a geometrically
nonlinear structural analysis. 

2. FORMULATION 
2.1. The basic theory
In general, a nonlinear structural analysis is based on
the incremental equation shown below.

(1)

where K is the tangential stiffness matrix, d the
vector of changes in displacements, f the load mode
vector, and λ the change in load parameter. Many
numerical techniques, such as Riks-Method, load
incremental and displacement incremental methods
are developed to find the equilibrium path (load-
displacement curve) [6–8], and the buckling point is
obtained as a limit point and/or a bifurcation point in
the load-displacement curve.

For a common analysis procedure, the load mode
vector keeps constant, and its coefficient, the load
parameter, is increased step by step by the iteration. 

For the convenience of the mathematic analysis, we
make the load parameter as an explicitly objective
function. As the first step, we define a vector b by the
following equations. 

(2a)

(2b)

where f = {fi} and N is the number of nonzero
elements of f. Then, an explicit function of the load
parameter at incremental step u can be obtained as the
following equation.

(3)

If the buckling point is found at step T of the
nonlinear structural analysis, the total buckling load
parameter Λ can be obtained as:

(4)

Then, the optimization for maximum buckling load
of a lattice space frame can be formulated as below.

where X is the joint coordinate vector with n elements
and U the other design parameters vector with m
elements. Equation (6) indicates the equality
constraints, Equation (7) the inequality constraints,
and these conditions make a constraint space S.

(8)

Then, the process of the optimization is to search a
point of the design parameters (X, U), X∈S and 
U∈S, at which the total buckling load parameter Λ
reaches its maximum.

2.2. Formulation for multi-loading modes
In fact, a structure should be able to support multi-
loading cases. On the other hands, the optimum shape
found by the present method depends on the loading
mode f. Therefore, the authors present an optimization
for multi-loading modes by introducing the weighting
function method. 

For every loading mode if (i=1,2,…,l), we can
define a vector ib (i=1,2,…,l) by Equations (2a, 2b)
and the load parameter by Equation (3). Then, the total
load parameters iΛ (i=1,2,…,l) can be obtained by 

(9)

Then the objective function is in form 

(10)

where are weighting factors

which are determined by the designers. Then the
optimization for multi-loading cases can be formulated
as: 
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maximum buckling load with member section
dimensions as design parameters is more efficient, and
can provide more information for the structural
working design. Hence, an optimum shape with
maximum buckling load may not be more sensitive to
its shape imperfection.

5. CONCLUSION 
By mathematical analysis and numerical examples, the
authors demonstrate that the present method is an
effective method for the shape optimization of
maximum buckling load. However, this method can
find the optima only in the vicinity of the initial design
parameters, but it may not be efficient to find the global
optima in constraint space. The present optimization
can determine the member sections automatically and
out put more information for the structural working
design. Authors deduct that optimization for maximum
buckling load with member section dimensions as

design parameters is more efficient than that with
geometrical shape-parameters only. 

The numerical example demonstrated that an
optimum shape with maximum buckling load may not
be sensitive to its shape imperfection, especially when
member section dimensions are taken as design
parameters. Nevertheless, a mathematic theory of
imperfection-sensitivity analysis for the present
optimization is remained. Instead of the imperfection
sensitivity analysis, the authors promoted a method of
comparing the nonlinear behaviors between the
imperfection shapes of the optimum and initial ones.
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Figure 15. The load-displacement curves of point a 
Shape imperfection for case 2; Full area loading case; 

Point a is shown in Fig. 3(b).
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